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Part I

Two classical examples
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Two classical examples

The central theme of this talk

Period integral
Algebraic cycle

// L-functionsoo

with an emphasis on the relative trace formula approach.
We first discuss two examples

Dirichlet’s solution to Pell’s equation, and two formulas of Dirichlet.
Heegner’s solution to elliptic curve, and the formula of
Gross–Zagier and of Birch–Swinnerton-Dyer.
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Dirichlet’s “explicit" solution to Pell’s equation (1837)

Pell’s equation
x2 − dy2 = ±1.

For simplicity, assume that d = p ≡ 1 mod 4 is a prime. Dirichlet
constructed an “explicit" triangular solution

x + y
√

p =θp

=

∏
a 6≡� mod p sin aπ

p∏
b≡� mod p sin bπ

p

0 < a,b < p/2.
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Two formulas of Dirichlet

Let
(
·
p

)
denote the Legendre symbol for quadratic residues. Let

L
(

s,
(
·
p

))
=

∑
n≥1, p-n

(
n
p

)
n−s.

Dirichlet’s first formula,

L′
(

0,
(
·
p

))
= log θp,

and the second formula

L′
(

0,
(
·
p

))
= hp log εp,

where hp is the class number and εp > 1 is the fundamental unit of
K = Q[

√
p],
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Modular parameterization of elliptic curves over Q

E : an elliptic curve over Q.
H = {τ ∈ C : Im(τ) > 0} the upper half plane.
∃ a modular parameterization

ϕ : H // EC .

modular
functions

+3
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An example: Heegner (1950s), Birch(1960s-1970s)

The elliptic curve
E : y2 = x3 − 1728

is parameterized by (γ2, γ3):

γ2(τ) =
E4

η8 =
1 + 240

∑∞
n=1 σ3(n)qn

q1/3
∏∞

n=1(1− qn)8 ,

γ3(τ) =
E6

η12 =
1− 504

∑∞
n=1 σ5(n)qn

q1/2
∏∞

n=1(1− qn)12 ,

where q = e2πiτ , τ ∈ H.
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Modular solution: Heegner point

K = Q[
√
−d ] ⊂ C: a (suitable) imaginary quadratic number field.

Heegner point: some of ϕ(K ∩H) produces

PK ∈ E(K ).

L(s,E/K ): the Hasse–Weil L-function of E over K (centered at
s = 1).

Theorem (Gross–Zagier formula (1980s))
There is an explicit c > 0 such that

L′(1,E/K ) = c · 〈PK ,PK 〉NT

where the RHS is the Nerón–Tate height pairing.
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Conjecture of Birch and Swinnerton-Dyer (1960s)

The order r = ords=1L(s,E/Q) equals to rank E(Q).
the leading term of the Taylor expansion

L(r)(1,E/Q)

r ! · cE
= #X · Reg(E)

where
X : Tate–Shafarevich group.
Reg(E) is the regulator (∼ the “volume" of the abelian group E(Q)
in E(Q)⊗Z R w.r.t. the Néron–Tate metric).
cE = ΩE

∏
` prime c`, ΩE is the real period, c` the number of

connected components of the special fiber of Néron model at `.
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Theorem (Skinner, Z., ∼ ’14)
Let E be semistable. If ords=1L(s,E/Q) = 3 (or any odd integer ≥ 3),
then either

#X =∞ , or
rank E(Q) ≥ 3.
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Part II

Automorphic period and L-values
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Automorphic period integral

G reductive group over a global field F , and (spherical) H ⊂ G.

The automorphic quotients [H] := H(F )\H(A) // [G] .

π: a (tempered) cuspidal automorphic repn. of G.
Automorphic period integral

PH(φ) :=

∫
[H]
φ(h)dh, φ ∈ π.

Automorphic periods are often related to (special) values of
L-functions, e.g. the Rankin–Selberg pair (GLn−1,GLn−1 × GLn).
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Gan–Gross–Prasad pairs (H,G)

F ′/F : quadratic extension of number fields.
W : F ′/F -Hermitian space, dimF ′ W = n.
W [ ⊂W , codimension one, U(W [) ⊂ U(W ).
Diagonal embedding

H = U(W [) ⊂ G = U(W [)× U(W ).

The pair (H,G) is called the unitary Gan–Gross–Prasad pair. Similar
construction applies to orthogonal groups.
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Global Gan–Gross–Prasad conjecture

(H,G): the Gan–Gross–Prasad pair (unitary/orthogonal).
π: a tempered cusp. automorphic repn. of G.
L(s, π,R): the Rankin–Selberg L-function for the endoscopic
functoriality transfer of π.

Conjecture (Gan–Gross–Prasad)
The following are equivalent

1 The automorphic H-period integral does not vanish on π, i.e.,
PH(φ) 6= 0 for some φ ∈ π.

2 L(1
2 , π,R) 6= 0 (and HomH(A)(π,C) 6= 0).
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The unitary Gan–Gross–Prasad pair

Theorem
Let (H,G) be the unitary GGP pair. The conjecture holds if

there exists a place v of F split in F ′ where πv is supercuspidal.

Remark
The same holds for a refined GGP conjecture of Ichino–Ikeda.
n = 2 (i.e., G ' U(1)× U(2)): Waldspurger (1980s).
n > 2 : due to a series of work on Jacquet–Rallis relative trace
formula by several authors: Yun, Beuzart-Plessis, Xue, and the
author.
Work in progress by Zydor and Chaudouard on the spectral side
will remove the above local condition.
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Part III

Special cycles and L-derivatives
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Shimura datum

Shimura datum:
(
G,XG

)
G: (connected) reductive group over Q,
XG = {hG}: a G(R)-conjugacy class of R-group homomorphisms
hG : C× → GR, satisfying Deligne’s list of axioms (in particular, XG
is a Hermitian symmetric domain).
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Examples of (GR,XG)

1 (Type A) GR = U(r , s) (for r + s = n) and XG = U(r ,s)
U(r)×U(s) . When

r = 1, XG = Dn−1 =
{

z ∈ Cn−1 : z · z < 1
}

is the unit ball.

∼ //

2 (Type B,D) Tube domains: GR = SO(n,2),XG = SO(n,2)
SO(n)×SO(2) .

3 (Type C) GR = GSp2g , Siegel upper half space
XG = {z ∈ Symmg×g(C) : Im(z) > 0}.
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Special pair of Shimura data

A special pair of Shimura data is a homomorphism(
H,XH

)
//
(
G,XG

)
such that

1 the pair (H,G) is spherical, and
2 the dimensions (as complex manifolds) satisfy

dimC XH =
dimC XG − 1

2
.

Example (Gross–Zagier pair)

Let F = Q[
√
−d ] be an imaginary quadratic field. Let

H = RF/QGm ⊂ G = GL2,Q.

Then dim XG = 1, dim XH = 0.
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Some more examples (over R)

1 Gan–Gross–Prasad pairs

GR HR

unitary groups U(1,n − 2)× U(1,n − 1) U(1,n − 2)

orthogonal groups SO(2,n − 2)× SO(2,n − 1) SO(2,n − 2)

2 Symmetric pairs

GR HR

unitary groups U(1,2n − 1) U(1,n − 1)× U(0,n)

orthogonal groups SO(2,2n − 1) SO(2,n − 1)× SO(0,n)
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Arithmetic diagonal cycles

We now focus on the unitary GGP pair (H,G) that can be enhanced to
a special pair of Shimura data.

The arithmetic diagonal cycle

ShH // ShG ,

(for certain level sugroups K ◦H,K
◦
G).

∃ a PEL type variant of the GGP Shimura varieties, with smooth
integral models ShH and ShG [Rapoport–Smithling–Z. ’17].

Define

Int(f ) =
(

f ∗ [ShH], [ShH]
)

ShG
, f ∈H (G,K ◦G) ,

where the action is through the Hecke correspondence associated to
certain f in the Hecke algebra H (G,K ◦G).
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One version of the arithmetic GGP conjecture

Conjecture

There is a decomposition

Int(f ) =
∑
π

Intπ(f ), for all f ∈H (G,K ◦G) ,

π : cohomological automorphic repn. of G(A),
Intπ : eigen-distribution for the spherical Hecke algebra H S(G̃)
away from the set S of bad places, with eigen-character given by
π.

Moreover, if π is tempered, the following are equivalent
1 Intπ 6= 0.
2 L′(1

2 , π,R) 6= 0 (and HomH(A∞)(π∞,C) 6= 0).
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Theorem (Gross–Zagier ’86, Yuan–S. Zhang–Z. ’12)
When n = 2 (i.e., G = U(1)× U(2)), the conjecture holds.

Corollary
Let F be a totally real number field, and π a cusp. automorphic repn.
of PGL2(AF ) with π∞ parallel weight two. Then

L ′(1/2, π) ≥ 0.

Question: What about n ≥ 3, i.e., when the Shimura variety is of
dimension higher than one?
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GGP, and Arithmetic GGP

Central value

Waldspurger

��
GGP

Ichino–Ikeda

1st central derivative

Gross–Zagier

��
Arithmetic GGP
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Part IV

Higher Gross–Zagier formula
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Higher Gross–Zagier formula
(in positive equal char. case)

{
Number fields
[F : Q] <∞

}
oo //

[[

��

{
Function fields

[F : Fq(t)] <∞

}
BB

��{
Function fields
[F : C(t)] <∞

}
26



Higher Gross–Zagier formula
(in positive equal char. case)

{Arithmetic
curves

}
oo //

[[

��

{
Algebraic

curves /Fq

}
CC

��
{Riemann surfaces }
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Drinfeld Shtukas

k = Fq, and X/k a curve.
Shtukas of rank n with r -legs: for S over Speck

ShtrGLn,X (S) =


vector bundles E of rank n on X × S

+simple modification E → (id× FrobS)∗E
at r -marked points xi : S → X ,1 ≤ i ≤ r


ShtrGLn,X

��
X r = X ×Speck · · · ×Speck X︸ ︷︷ ︸

r times
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The special case r = 0, G = GLn

Shtr=0
G = BunG(k)

OO

��
{ rank n vector bundles over X }OO

Weil

��
[G] = G(F )\G(A)

H0
c (Shtr=0

G )
OO

��
C∞c ([G])
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Heegner–Drinfeld cycle

Fix an étale double covering X ′ → X . We have a natural morphism

ShtrGLn/2,X ′
// ShtrGLn,X .

They have dimensions
nr
2
, nr .

A technical simplification: we pass to PGLn, then take base change to
(X ′)r :

θr : ShtrH // Sht
′r
G := ShtrG ×X r (X ′)r

where
H = RX ′/X (GLn/2)/Gm,X ⊂ G = PGLn,X .
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Higher Gross–Zagier formula, n = 2

Now G = PGL2, and Sht
′r
G , for even integer r ≥ 0.

Vr = H2r
c

(
Sht
′r
PGL2
⊗k k ,Q`

)
has a spectral decomposition

Vr =

(⊕
π

Vr ,π

)
⊕ “Eisenstein part",

π : unramified cusp. automorphic repn. of PGL2(A).
L(s, πX ′) : the (normalized) base change L-function.

Theorem (Yun–Z.)
Let Zr ∈ Vr be the cycle class of Heegner–Drinfeld cycle, and
Zr ,π ∈ Vr ,π. Then

L(r)(1/2, πX ′) = c ·
(

Zr ,π,Zr ,π

)
,

where (·, ·) is the intersection pairing, and c > 0 is explicit.
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A comparison with the number field case

1 When r = 0, the automorphic quotient space (versus Bunn(Fq))

[G] = G(F )\G(A).

2 When r = 1, Shimura variety (versus moduli of Shtukas)

ShG

��

ShtrGLn

��
SpecZ X r = X ×Speck · · · ×Speck X︸ ︷︷ ︸

r times
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An indirect example:
Faltings heights of CM abelian varieties

Kronecker limit formula for an imaginary quadratic field K = Q[
√
−d ]:

hFal(Ed ) = −L′(0, χ−d )

L(0, χ−d )
− 1

2
log |d |,

where Ed is an elliptic curve with complex multiplication by OK .
Colmez conjecture generalizes the identity to CM abelian varieties.

Faltings heights
of CM abelian varieties

// d log of L-functions
totally negative Artin repn. of GalQ

oo

An averaged version is recently proved by Yuan–S. Zhang and by
Andreatta–Goren–Howard–Madapusi-Pera.
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A summary

Central value

Waldspurger

��
GGP

Ichino–Ikeda

1st derivative

Gross–Zagier

��
Arithmetic GGP

r th derivative

Higher G-Z

��
∗ ∗ ∗
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Part V

Relative trace formula and arithmetic
fundamental lemma
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Relative trace formula (RTF)

The basic strategy is to compare two relative trace formulas:

one for the “geometric" side (intersection numbers of algebraic
cycles),
the other for the “analytic" side (L-values).

Below we consider the two cases
Higher Gross–Zagier formula.
GGP and its arithmetic version.
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Geometric RTF (over function fields)

Geometric side: Let f be an element in the spherical Hecke algebra
H . Set

Intr (f ) :=
(

f ∗ [ShtrH], [ShtrH]
)

Sht′rG

.

Analytic side: consider the triple (G′,H′1,H
′
2) where G′ = G = PGL2

and H′1 = H′2 are the diagonal torus A of PGL2.

J(f , s) :=

∫
[H′1]

∫
[H′2]

Kf (h1,h2) |h1h2|s η(h2) dh1 dh2, s ∈ C

where ηF ′/F is a quadratic character, and

Kf (x , y) :=
∑

γ∈G′(F )

f (x−1γy), x , y ∈ G′(A), f ∈ C∞c (G′(A)).

Note that this is a weighted version of(
f ∗ [Sht0H′1 ], [Sht0H′2 ]

)
Sht0G

=
(

f ∗ [BunA(k)], [BunA(k)]
)

BunG(k)
.
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Geometric RTF (over function fields)

Let
Jr (f ) =

d r

dsr

∣∣∣
s=0

J(f , s).

The following key identity, which we may call a geometric RTF ( in
contrast to the arithmetic intersection numbers in the number field
case (AGGP) below).

Theorem (Yun–Z.)
Let f ∈H . Then

Ir (f ) = (− log q)−rJr (f ).

Informally we may state the identity as(
f ∗ [ShtrH], [ShtrH]

)
Sht′rG

“ = ”
d r

dsr

∣∣∣
s=0

(
fs,η ∗ [Sht0A], [Sht0A]

)
Sht0G

.
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Jacquet–Rallis RTF: analytic side

We now move to the number field case. Similarly, we define linear
functionals on Hecke algebras:

I(f ) for the unitary GGP triple (G,H,H), and
J(f ′, s) for the Jacquet–Rallis triple (G′,H′1,H

′
2) where

G′ = RF ′/F (GLn−1 × GLn)

H′1 =RF ′/F GLn−1, H′2 = GLn−1 × GLn.

Then we have an analogous RTF identity

Theorem
There is a natural correspondence (for nice test functions) f ↔ f ′ such
that

I(f ) = J(f ′,0).
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An arithmetic intersection conjecture

Let
∂J(f ′) =

d
ds

∣∣∣
s=0

J(f ′, s).

Recall we have defined an arithmetic intersection number

Int(f ) =
(

f ∗ [ShH], [ShH]
)

ShG
, f ∈H (G,K ◦G) .

Conjecture (Z. ’12, Rapoport–Smithling–Z. ’17)
There is a natural correspondence (for nice test functions) f ↔ f ′ such
that

Int(f ) = −∂J(f ′).
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Connection to L-functions

For nice f ′, we have a decomposition as a sum of relative characters
for the triple (G′,H′1,H

′
2)

J(f ′, s) =
∑

Π

JΠ(f ′, s),

and, for cuspidal Π, a factorization into certain local relative characters

JΠ(f ′, s) = 2−2L (s + 1/2, π)
∏

v

JΠv (f ′v , s).
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Passing to the local situation

{
Number fields
[F : Q] <∞

}
oo //

��

{
Function fields

[F : Fq(t)] <∞

}

��{
p-adic fields
[F : Qp] <∞

}
oo //

{
local function fields
[F : Fq((t))] <∞

}
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Unitary Rapoport–Zink space

F ′/F : an unramified quadratic extension of p-adic fields.
Xn : n-dim’l Hermitian supersingular formal OF ′-modules of
signature (1,n − 1) (unique up to isogeny).
Nn : the unitary Rapoport–Zink formal moduli space over Spf(OF̆ )
(parameterizing “deformations" of Xn).
The group Aut0(Xn) is a unitary group in n-variable and acts on
Nn.
The Nn ’s are non-archimedean analogs of Hermitian symmetric
domains. They have a “skeleton" given by a union of
Deligne–Lusztig varieties for unitary groups over finite fields.
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Local intersection numbers

A natural closed embedding δ : Nn−1 → Nn, and its graph

∆: Nn−1 // Nn−1,n = Nn−1 ×SpfOF̆
Nn.

Denote by ∆Nn−1 the image of ∆.

The group G(F ) := Aut0(Xn−1)× Aut0(Xn) acts on Nn−1,n. For
(nice) g ∈ G(F ), we define the intersection number

Int(g) =
(
∆Nn−1 ,g ·∆Nn−1

)
Nn−1,n

: = χ
(
Nn−1,n,O∆Nn−1

⊗L Og·∆Nn−1

)
.
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The arithmetic fundamental lemma (AFL) conjecture

Define a family of (weighted) orbital integrals:

Orb
(
γ,1gln(OF ), s

)
=

∫
GLn−1(F )

1gln(OF )(h−1γh)
∣∣ det(h)

∣∣s(−1)val(det(h)) dh.

This serves as the local version of the analytic RTF. Then the local
version of the global “arithmetic intersection conjecture" is

Conjecture (Z. ’12)
Let γ ∈ gln(F ) match an element g ∈ G(F ). Then

± d
ds

∣∣∣∣
s=0

Orb
(
γ,1gln(OF ), s

)
= −Int(g) · log q.
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The status

Theorem (Z. ’12)
The AFL conjecture holds when n ≤ 3.

A simplified proof when p ≥ 5 is given by Mihatsch.
For n > 3, we only have some partial results.

Theorem (Rapoport–Terstiege–Z. ’13)
When p ≥ n

2 + 1, the AFL conjecture holds for minuscule elements
g ∈ G(F ).

A simplified proof is given by Chao Li and Yihang Zhu.
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Ramified quadratic extension F ′/F

Non-archimedean ramified F ′/F (Rapoport–Smithling–Z. ’15, ’16):
an arithmetic transfer (AT) conjecture, and the case n ≤ 3 is
proved.
Question: what about archimedean F ′/F?
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Thank you!
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