Periods, cycles, and L-functions: a relative trace formula approach

Wei Zhang

Massachusetts Institute of Technology

ICM 2018, Rio

Part I

Two classical examples

Two classical examples

The central theme of this talk
Period integral Algebraic cycle

with an emphasis on the relative trace formula approach.
We first discuss two examples

- Dirichlet's solution to Pell's equation, and two formulas of Dirichlet.
- Heegner's solution to elliptic curve, and the formula of Gross-Zagier and of Birch-Swinnerton-Dyer.

Dirichlet's "explicit" solution to Pell's equation (1837)

Pell's equation

$$
x^{2}-d y^{2}= \pm 1
$$

For simplicity, assume that $d=p \equiv 1 \bmod 4$ is a prime. Dirichlet constructed an "explicit" triangular solution

$$
\begin{aligned}
x+y \sqrt{p}= & \theta_{p} \\
= & \frac{\prod_{a \neq \square \bmod p} \sin \frac{a \pi}{p}}{\prod_{b \equiv \square \bmod p} \sin \frac{b \pi}{p}} \\
& 0<a, b<p / 2 .
\end{aligned}
$$

Two formulas of Dirichlet

Let $(\dot{\bar{p}})$ denote the Legendre symbol for quadratic residues. Let

$$
L\left(s,\left(\frac{\cdot}{p}\right)\right)=\sum_{n \geq 1, p \nmid n}\left(\frac{n}{p}\right) n^{-s} .
$$

Dirichlet's first formula,

$$
L^{\prime}\left(0,\left(\frac{\cdot}{p}\right)\right)=\log \theta_{p}
$$

and the second formula

$$
L^{\prime}\left(0,\left(\frac{\cdot}{p}\right)\right)=h_{p} \log \epsilon_{p}
$$

where h_{p} is the class number and $\epsilon_{p}>1$ is the fundamental unit of $K=\mathbb{Q}[\sqrt{p}]$,

Modular parameterization of elliptic curves over \mathbb{Q}

- E : an elliptic curve over \mathbb{Q}.
- $\mathcal{H}=\{\tau \in \mathbb{C}: \operatorname{Im}(\tau)>0\}$ the upper half plane.
- \exists a modular parameterization

$$
\varphi: \mathcal{H} \longrightarrow E_{\mathbb{C}}
$$

An example: Heegner (1950s), Birch(1960s-1970s)

The elliptic curve

$$
E: y^{2}=x^{3}-1728
$$

is parameterized by $\left(\gamma_{2}, \gamma_{3}\right)$:

$$
\begin{aligned}
& \gamma_{2}(\tau)=\frac{E_{4}}{\eta^{8}}=\frac{1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n}}{q^{1 / 3} \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{8}} \\
& \gamma_{3}(\tau)=\frac{E_{6}}{\eta^{12}}=\frac{1-504 \sum_{n=1}^{\infty} \sigma_{5}(n) q^{n}}{q^{1 / 2} \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{12}}
\end{aligned}
$$

where $q=e^{2 \pi i \tau}, \tau \in \mathcal{H}$.

Modular solution: Heegner point

- $K=\mathbb{Q}[\sqrt{-d}] \subset \mathbb{C}$: a (suitable) imaginary quadratic number field.
- Heegner point: some of $\varphi(K \cap \mathcal{H})$ produces

$$
\mathscr{P}_{K} \in E(K)
$$

- $L(s, E / K)$: the Hasse-Weil L-function of E over K (centered at $s=1$).

Theorem (Gross-Zagier formula (1980s))

There is an explicit $c>0$ such that

$$
L^{\prime}(1, E / K)=c \cdot\left\langle\mathscr{P}_{K}, \mathscr{P}_{K}\right\rangle_{\mathrm{NT}}
$$

where the RHS is the Nerón-Tate height pairing.

Conjecture of Birch and Swinnerton-Dyer (1960s)

- The order $r=\operatorname{ord}_{s=1} L(s, E / \mathbb{Q})$ equals to $\operatorname{rank} E(\mathbb{Q})$.
- the leading term of the Taylor expansion

$$
\frac{L^{(r)}(1, E / \mathbb{Q})}{r!\cdot C_{E}}=\# \amalg \cdot \operatorname{Reg}(E)
$$

where

- W : Tate-Shafarevich group.
- $\operatorname{Reg}(E)$ is the regulator (\sim the "volume" of the abelian group $E(\mathbb{Q})$ in $E(\mathbb{Q}) \otimes_{\mathbb{Z}} \mathbb{R}$ w.r.t. the Néron-Tate metric).
- $c_{E}=\Omega_{E} \prod_{\ell \text { prime }} c_{\ell}, \Omega_{E}$ is the real period, c_{ℓ} the number of connected components of the special fiber of Néron model at ℓ.

Theorem (Skinner, Z., ~ '14)

Let E be semistable. If $\operatorname{ord}_{s=1} L(s, E / \mathbb{Q})=3$ (or any odd integer ≥ 3), then either

- $\# Ш=\infty$, or
- $\operatorname{rank} E(\mathbb{Q}) \geq 3$.

Part II

Automorphic period and L-values

Automorphic period integral

- G reductive group over a global field F, and (spherical) $\mathrm{H} \subset \mathrm{G}$.
- The automorphic quotients $[\mathrm{H}]:=\mathrm{H}(F) \backslash \mathrm{H}(\mathbb{A}) \longrightarrow[\mathrm{G}]$.
- π : a (tempered) cuspidal automorphic repn. of G.
- Automorphic period integral
- Automorphic periods are often related to (special) values of L-functions, e.g. the Rankin-Selberg pair ($\mathrm{GL}_{n-1}, \mathrm{GL}_{n-1} \times \mathrm{GL}_{r}$).

Automorphic period integral

- G reductive group over a global field F, and (spherical) $\mathrm{H} \subset \mathrm{G}$.
- The automorphic quotients $[\mathrm{H}]:=\mathrm{H}(F) \backslash \mathrm{H}(\mathbb{A}) \longrightarrow[\mathrm{G}]$.
- π : a (tempered) cuspidal automorphic repn. of G.
- Automorphic period integral

$$
\mathscr{P}_{\mathrm{H}}(\phi):=\int_{[\mathrm{H}]} \phi(h) d h, \quad \phi \in \pi .
$$

- Automorphic periods are often related to (special) values of L-functions, e.g. the Rankin-Selberg pair ($\mathrm{GL}_{n-1}, \mathrm{GL}_{n-1} \times \mathrm{GL}_{n}$).

Gan-Gross-Prasad pairs (H, G)

- F^{\prime} / F : quadratic extension of number fields.
- $W: F^{\prime} / F$-Hermitian space, $\operatorname{dim}_{F^{\prime}} W=n$.
- $W^{b} \subset W$, codimension one, $\mathrm{U}\left(W^{b}\right) \subset \mathrm{U}(W)$.
- Diagonal embedding

$$
\mathrm{H}=\mathrm{U}\left(W^{b}\right) \subset \mathrm{G}=\mathrm{U}\left(W^{b}\right) \times \mathrm{U}(W)
$$

The pair (H, G) is called the unitary Gan-Gross-Prasad pair. Similar construction applies to orthogonal groups.

Global Gan-Gross-Prasad conjecture

- (H, G): the Gan-Gross-Prasad pair (unitary/orthogonal).
- π : a tempered cusp. automorphic repn. of G.
- $L(s, \pi, R)$: the Rankin-Selberg L-function for the endoscopic functoriality transfer of π.

Conjecture (Gan-Gross-Prasad)

The following are equivalent
(1) The automorphic H-period integral does not vanish on π, i.e., $\mathscr{P}_{\mathrm{H}}(\phi) \neq 0$ for some $\phi \in \pi$.
(2) $L\left(\frac{1}{2}, \pi, R\right) \neq 0\left(\right.$ and $\left.\operatorname{Hom}_{H(\mathbb{A})}(\pi, \mathbb{C}) \neq 0\right)$.

The unitary Gan－Gross－Prasad pair

Theorem

Let（ H, G ）be the unitary GGP pair．The conjecture holds if
there exists a place v of F split in F^{\prime} where π_{v} is supercuspidal．

Remark

－The same holds for a refined GGP conjecture of Ichino－Ikeda．
－$n=2$（i．e．， $\mathrm{G} \simeq \mathrm{U}(1) \times \mathrm{U}(2)$ ）：Waldspurger（1980s）．
－$n>2$ ：due to a series of work on Jacquet－Rallis relative trace formula by several authors：Yun，Beuzart－Plessis，Xue，and the author．
－Work in progress by Zydor and Chaudouard on the spectral side will remove the above local condition．

Part III

Special cycles and L-derivatives

Shimura datum

Shimura datum: $\left(\mathrm{G}, X_{\mathrm{G}}\right)$

- G: (connected) reductive group over \mathbb{Q},
- $X_{\mathrm{G}}=\left\{h_{\mathrm{G}}\right\}$: a $\mathrm{G}(\mathbb{R})$-conjugacy class of \mathbb{R}-group homomorphisms $h_{\mathrm{G}}: \mathbb{C}^{\times} \rightarrow \mathrm{G}_{\mathbb{R}}$, satisfying Deligne's list of axioms (in particular, X_{G} is a Hermitian symmetric domain).

Examples of $\left(\mathrm{G}_{\mathbb{R}}, X_{G}\right)$

(1) (Type A) $\mathrm{G}_{\mathbb{R}}=\mathrm{U}(r, s)($ for $r+s=n)$ and $X_{\mathrm{G}}=\frac{\mathrm{U}(r, s)}{\mathrm{U}(r) \times \mathrm{U}(s)}$. When $r=1, X_{\mathrm{G}}=D_{n-1}=\left\{z \in \mathbb{C}^{n-1}: z \cdot \bar{z}<1\right\}$ is the unit ball.

(3) (Type $B, D)$ Tube domains: $\mathrm{G}_{\mathbb{R}}=\mathrm{SO}(n, 2), X_{\mathrm{G}}=\frac{\mathrm{SO}(n, 2)}{\mathrm{SO}(n) \times \mathrm{SO}(2)}$
(3) (Type C) $\mathrm{G}_{\mathbb{R}}=\mathrm{GSp}_{2 g}$, Siegel upper half space $X_{\mathrm{G}}=\left\{z \in \operatorname{Symm}_{g \times g}(\mathbb{C}): \operatorname{Im}(z)>0\right\}$.

Examples of $\left(\mathrm{G}_{\mathbb{R}}, X_{G}\right)$

(1) (Type A) $\mathrm{G}_{\mathbb{R}}=\mathrm{U}(r, s)($ for $r+s=n)$ and $X_{\mathrm{G}}=\frac{\mathrm{U}(r, s)}{\mathrm{U}(r) \times \mathrm{U}(s)}$. When $r=1, X_{G}=D_{n-1}=\left\{z \in \mathbb{C}^{n-1}: z \cdot \bar{z}<1\right\}$ is the unit ball.

(2) (Type B, D) Tube domains: $\mathrm{G}_{\mathbb{R}}=\mathrm{SO}(n, 2), X_{\mathrm{G}}=\frac{\mathrm{SO}(n, 2)}{\mathrm{SO}(n) \times \mathrm{SO}(2)}$.
(3) (Type C) $\mathrm{G}_{\mathbb{R}}=\mathrm{GSp}_{2 g}$, Siegel upper half space $X_{\mathrm{G}}=\left\{z \in \operatorname{Symm}_{g \times g}(\mathbb{C}): \operatorname{Im}(z)>0\right\}$.

Special pair of Shimura data

A special pair of Shimura data is a homomorphism

$$
\left(\mathrm{H}, X_{\mathrm{H}}\right) \longrightarrow\left(\mathrm{G}, X_{\mathrm{G}}\right)
$$

such that
(1) the pair (H, G) is spherical, and
(2) the dimensions (as complex manifolds) satisfy

$$
\operatorname{dim}_{\mathbb{C}} X_{\mathrm{H}}=\frac{\operatorname{dim}_{\mathbb{C}} X_{\mathrm{G}}-1}{2}
$$

Example (Gross-Zagier pair)

Let $F=\mathbb{Q}[\sqrt{-d}]$ be an imaginary quadratic field. Let

$$
\mathrm{H}=\mathrm{R}_{F / \mathbb{Q}} \mathbb{G}_{m} \subset \mathrm{G}=\mathrm{GL}_{2, \mathbb{Q}} .
$$

Then $\operatorname{dim} X_{\mathrm{G}}=1, \operatorname{dim} X_{\mathrm{H}}=0$.

Some more examples (over \mathbb{R})

(1) Gan-Gross-Prasad pairs

	$\mathrm{G}_{\mathbb{R}}$	$\mathrm{H}_{\mathbb{R}}$
unitary groups	$\mathrm{U}(1, n-2) \times \mathrm{U}(1, n-1)$	$\mathrm{U}(1, n-2)$
orthogonal groups	$\mathrm{SO}(2, n-2) \times \mathrm{SO}(2, n-1)$	$\mathrm{SO}(2, n-2)$

(2) Symmetric pairs

	$\mathrm{G}_{\mathbb{R}}$	$\mathrm{H}_{\mathbb{R}}$
unitary groups	$\mathrm{U}(1,2 n-1)$	$\mathrm{U}(1, n-1) \times \mathrm{U}(0, n)$
orthogonal groups	$\mathrm{SO}(2,2 n-1)$	$\mathrm{SO}(2, n-1) \times \mathrm{SO}(0, n)$

Arithmetic diagonal cycles

We now focus on the unitary GGP pair (H, G) that can be enhanced to a special pair of Shimura data.

- The arithmetic diagonal cycle

$$
\mathrm{Sh}_{\mathrm{H}} \longrightarrow \mathrm{Sh}_{\mathrm{G}},
$$

(for certain level sugroups $K_{\mathrm{H}}^{\circ}, K_{\mathrm{G}}^{\circ}$).

- \exists a PEL type variant of the GGP Shimura varieties, with smooth integral models Sh_{H} and Sh_{G} [Rapoport-Smithling-Z. '17].
Define

$$
\operatorname{Int}(f)=\left(f *\left[\mathrm{Sh}_{\mathrm{H}}\right],\left[\mathrm{Sh}_{\mathrm{H}}\right]\right)_{\mathrm{Sh}_{\mathrm{G}}}, \quad f \in \mathscr{H}\left(\mathrm{G}, K_{\mathrm{G}}^{\circ}\right),
$$

where the action is through the Hecke correspondence associated to certain f in the Hecke algebra $\mathscr{H}\left(\mathrm{G}, K_{\mathrm{G}}^{\circ}\right)$.

One version of the arithmetic GGP conjecture

Conjecture

There is a decomposition

$$
\operatorname{Int}(f)=\sum_{\pi} \operatorname{Int}_{\pi}(f), \quad \text { for all } f \in \mathscr{H}\left(\mathrm{G}, K_{\mathrm{G}}^{\circ}\right),
$$

- π : cohomological automorphic repn. of $\mathrm{G}(\mathbb{A})$,
- Int_{π} : eigen-distribution for the spherical Hecke algebra $\mathscr{H}^{S}(\widetilde{\mathrm{G}})$ away from the set S of bad places, with eigen-character given by π.
Moreover, if π is tempered, the following are equivalent
(1) $\operatorname{Int}_{\pi} \neq 0$.
(2) $L^{\prime}\left(\frac{1}{2}, \pi, R\right) \neq 0\left(\right.$ and $\left.\operatorname{Hom}_{H\left(\mathbb{A}^{\infty}\right)}\left(\pi^{\infty}, \mathbb{C}\right) \neq 0\right)$.

Theorem (Gross-Zagier '86, Yuan-S. Zhang-Z. '12)

When $n=2$ (i.e., $\mathrm{G}=\mathrm{U}(1) \times \mathrm{U}(2)$), the conjecture holds.

Corollary

Let F be a totally real number field, and π a cusp. automorphic repn. of $\mathrm{PGL}_{2}\left(\mathbb{A}_{F}\right)$ with π_{∞} parallel weight two. Then

$$
\mathscr{L}^{\prime}(1 / 2, \pi) \geq 0 .
$$

Question: What about $n \geq 3$, i.e., when the Shimura variety is of dimension higher than one?

GGP, and Arithmetic GGP

Central value $\quad 1^{\text {st }}$ central derivative

Part IV

Higher Gross-Zagier formula

Higher Gross-Zagier formula (in positive equal char. case)

$$
\left\{\begin{array}{c}
\text { Number fields } \\
{[F: \mathbb{Q}]<\infty}
\end{array}\right\}<\cdots \ldots,\left\{\begin{array}{c}
\text { Function fields } \\
{\left[F: \mathbb{F}_{q}(t)\right]<\infty}
\end{array}\right\}
$$

Higher Gross-Zagier formula (in positive equal char. case)

Drinfeld Shtukas

- $k=\mathbb{F}_{q}$, and X / k a curve.
- Shtukas of rank n with r-legs: for S over Speck

$$
\operatorname{Sht}_{\mathrm{GL}_{n}, X}^{r}(S)=\left\{\begin{array}{c}
\text { vector bundles } \mathcal{E} \text { of rank } n \text { on } X \times S \\
+ \text { simple modification } \mathcal{E} \rightarrow\left(\mathrm{id} \times \operatorname{Frob}_{S}\right)^{*} \mathcal{E} \\
\text { at } r \text {-marked points } x_{i}: S \rightarrow X, 1 \leq i \leq r
\end{array}\right\}
$$

The special case $r=0, \mathrm{G}=\mathrm{GL}_{n}$

Heegner-Drinfeld cycle

Fix an étale double covering $X^{\prime} \rightarrow X$. We have a natural morphism

$$
\operatorname{Sht}_{\mathrm{GL}_{n / 2}, x^{\prime}}^{r} \longrightarrow \operatorname{Sht}_{\mathrm{GL}_{n}, x}^{r}
$$

They have dimensions

$$
\frac{n r}{2}, \quad n r .
$$

A technical simplification: we pass to PGL $_{n}$, then take base change to

Heegner-Drinfeld cycle

Fix an étale double covering $X^{\prime} \rightarrow X$. We have a natural morphism

$$
\operatorname{Sht}_{\mathrm{GL}_{n / 2}, x^{\prime}}^{r} \longrightarrow \operatorname{Sht}_{\mathrm{GL}_{n}, x}^{r}
$$

They have dimensions

$$
\frac{n r}{2}, \quad n r .
$$

A technical simplification: we pass to PGL_{n}, then take base change to $\left(X^{\prime}\right)^{r}$:

$$
\theta^{r}: \operatorname{Sht}_{\mathrm{H}}^{r} \longrightarrow \operatorname{Sht}_{\mathrm{G}}^{\prime r}:=\operatorname{Sht}_{\mathrm{G}}^{r} \times X^{r}\left(X^{\prime}\right)^{r}
$$

where

$$
\mathrm{H}=\mathrm{R}_{X^{\prime} / X}\left(\mathrm{GL}_{n / 2}\right) / \mathbb{G}_{m, X} \subset \mathrm{G}=\mathrm{PGL}_{n, X}
$$

Higher Gross-Zagier formula, $n=2$

- Now $\mathrm{G}=\mathrm{PGL}_{2}$, and $\operatorname{Sht}_{\mathrm{G}}{ }^{\prime}$, for even integer $r \geq 0$.
- $V_{r}=H_{c}^{2 r}\left(\operatorname{Sht}_{\mathrm{PGL}_{2}}^{\prime r} \otimes_{k} \bar{k}, \overline{\mathbb{Q}}_{\ell}\right)$ has a spectral decomposition

$$
V_{r}=\left(\bigoplus_{\pi} V_{r, \pi}\right) \oplus \text { "Eisenstein part", }
$$

π : unramified cusp. automorphic repn. of $\operatorname{PGL}_{2}(\mathbb{A})$.

- $L\left(s, \pi_{X^{\prime}}\right)$: the (normalized) base change L-function.

Theorem (Yun-Z.)

Let $Z_{r} \in V_{r}$ be the cycle class of Heegner-Drinfeld cycle, and $Z_{r, \pi} \in V_{r, \pi}$. Then

$$
L^{(r)}\left(1 / 2, \pi_{X^{\prime}}\right)=c \cdot\left(Z_{r, \pi}, Z_{r, \pi}\right)
$$

where (\cdot, \cdot) is the intersection pairing, and $c>0$ is explicit.

A comparison with the number field case

(1) When $r=0$, the automorphic quotient space (versus $\operatorname{Bun}_{n}\left(\mathbb{F}_{q}\right)$)

$$
[\mathrm{G}]=\mathrm{G}(F) \backslash \mathrm{G}(\mathbb{A})
$$

(2) When $r=1$, Shimura variety (versus moduli of Shtukas)

An indirect example:
 Faltings heights of CM abelian varieties

Kronecker limit formula for an imaginary quadratic field $K=\mathbb{Q}[\sqrt{-d}]$:

$$
h_{\text {Fal }}\left(E_{d}\right)=-\frac{L^{\prime}\left(0, \chi_{-d}\right)}{L\left(0, \chi_{-d}\right)}-\frac{1}{2} \log |d|,
$$

where E_{d} is an elliptic curve with complex multiplication by O_{K}. Colmez conjecture generalizes the identity to CM abelian varieties.

> Faltings heights of CM abelian varieties $\longleftrightarrow \begin{gathered}d \log \text { of } \mathrm{L} \text {-functions } \\ \text { totally negative Artin repn. of Gal }\end{gathered}$

An averaged version is recently proved by Yuan-S. Zhang and by Andreatta-Goren-Howard-Madapusi-Pera.

A summary

Central value $\quad 1^{\text {st }}$ derivative $\quad r^{\text {th }}$ derivative

Part V

Relative trace formula and arithmetic fundamental lemma

Relative trace formula (RTF)

The basic strategy is to compare two relative trace formulas:

- one for the "geometric" side (intersection numbers of algebraic cycles),
- the other for the "analytic" side (L-values).

Below we consider the two cases

- Higher Gross-Zagier formula.
- GGP and its arithmetic version.

Geometric RTF (over function fields)

Geometric side: Let f be an element in the spherical Hecke algebra \mathscr{H}. Set

$$
\operatorname{Int}_{r}(f):=\left(f *\left[\operatorname{Sh}_{\mathrm{H}}^{r}\right], \quad\left[\mathrm{Sh}_{\mathrm{H}}^{r}\right]\right)_{\operatorname{Sh}_{\mathrm{C}}^{\prime r_{\mathrm{C}}}}
$$

Analytic side: consider the triple $\left(\mathrm{G}^{\prime}, \mathrm{H}_{1}^{\prime}, \mathrm{H}_{2}^{\prime}\right)$ where $\mathrm{G}^{\prime}=\mathrm{G}=\mathrm{PGL}_{2}$ and $\mathrm{H}_{1}^{\prime}=\mathrm{H}_{2}^{\prime}$ are the diagonal torus A of PGL_{2}.

$$
\mathbb{J}(f, s):=\int_{\left[\mathrm{H}_{1}^{\prime}\right]} \int_{\left[\mathrm{H}_{2}^{\prime}\right]} K_{f}\left(h_{1}, h_{2}\right)\left|h_{1} h_{2}\right|^{s} \eta\left(h_{2}\right) d h_{1} d h_{2}, \quad s \in \mathbb{C}
$$

where $\eta_{F^{\prime} / F}$ is a quadratic character, and

$$
K_{f}(x, y):=\sum_{\gamma \in \mathrm{G}^{\prime}(F)} f\left(x^{-1} \gamma y\right), \quad x, y \in \mathrm{G}^{\prime}(\mathbb{A}), f \in \mathscr{C}_{c}^{\infty}\left(\mathrm{G}^{\prime}(\mathbb{A})\right) .
$$

Note that this is a weighted version of

$$
\left(f *\left[\operatorname{Sht}_{\mathrm{H}_{1}^{\prime}}^{0}\right],\left[\operatorname{Sht}_{\mathrm{H}_{2}^{\prime}}^{0}\right]\right)_{\operatorname{Sht}_{G}^{0}}=\left(f *\left[\operatorname{Bun}_{A}(k)\right],\left[\operatorname{Bun}_{A}(k)\right]\right)_{\operatorname{Bun}_{G}(k)} .
$$

Geometric RTF (over function fields)

Let

$$
\mathbb{J}_{r}(f)=\left.\frac{d^{r}}{d s^{r}}\right|_{s=0} \mathbb{J}(f, s)
$$

The following key identity, which we may call a geometric RTF (in contrast to the arithmetic intersection numbers in the number field case (AGGP) below).

Theorem (Yun-Z.)

Let $f \in \mathscr{H}$. Then

$$
\mathbb{I}_{r}(f)=(-\log q)^{-r} \mathbb{J}_{r}(f)
$$

Informally we may state the identity as

$$
\left(f *\left[\operatorname{Sht}_{\mathrm{H}}^{r}\right],\left[\operatorname{Sht}_{\mathrm{H}}^{r}\right]\right)_{\operatorname{Sht}_{\mathrm{G}}^{\prime r}} "=\left." \frac{d^{r}}{d s^{r}}\right|_{s=0}\left(f_{s, \eta} *\left[\operatorname{Sht}_{A}^{0}\right],\left[\operatorname{Sht}_{A}^{0}\right]\right)_{\operatorname{Sht}_{\mathrm{G}}^{0}} .
$$

Jacquet-Rallis RTF: analytic side

We now move to the number field case. Similarly, we define linear functionals on Hecke algebras:

- $\mathbb{I}(f)$ for the unitary GGP triple ($\mathrm{G}, \mathrm{H}, \mathrm{H}$), and
- $\mathbb{J}\left(f^{\prime}, s\right)$ for the Jacquet-Rallis triple ($\left.\mathrm{G}^{\prime}, \mathrm{H}_{1}^{\prime}, \mathrm{H}_{2}^{\prime}\right)$ where

$$
\begin{gathered}
\mathrm{G}^{\prime}=\mathrm{R}_{F^{\prime} / F}\left(\mathrm{GL}_{n-1} \times \mathrm{GL}_{n}\right) \\
\mathrm{H}_{1}^{\prime}=\mathrm{R}_{\mathrm{F}^{\prime} / F} \mathrm{GL}_{n-1}, \quad \mathrm{H}_{2}^{\prime}=\mathrm{GL}_{n-1} \times \mathrm{GL}_{n} .
\end{gathered}
$$

Then we have an analogous RTF identity

Theorem

There is a natural correspondence (for nice test functions) $f \leftrightarrow f^{\prime}$ such that

$$
\mathbb{I}(f)=\mathbb{J}\left(f^{\prime}, 0\right)
$$

An arithmetic intersection conjecture

Let

$$
\partial \mathbb{J}\left(f^{\prime}\right)=\left.\frac{d}{d s}\right|_{s=0} \mathbb{J}\left(f^{\prime}, s\right)
$$

Recall we have defined an arithmetic intersection number

$$
\operatorname{Int}(f)=\left(f *\left[\mathrm{Sh}_{\mathrm{H}}\right],\left[\mathrm{Sh}_{\mathrm{H}}\right]\right)_{\mathrm{Sh}_{\mathrm{G}}}, \quad f \in \mathscr{H}\left(\mathrm{G}, K_{\mathrm{G}}^{\circ}\right)
$$

Conjecture (Z. '12, Rapoport-Smithling-Z. '17)

There is a natural correspondence (for nice test functions) $f \leftrightarrow f^{\prime}$ such that

$$
\operatorname{Int}(f)=-\partial \mathbb{J}\left(f^{\prime}\right)
$$

Connection to L-functions

For nice f^{\prime}, we have a decomposition as a sum of relative characters for the triple $\left(\mathrm{G}^{\prime}, \mathrm{H}_{1}^{\prime}, \mathrm{H}_{2}^{\prime}\right)$

$$
\mathbb{J}\left(f^{\prime}, s\right)=\sum_{\Pi} \mathbb{J}_{\Pi}\left(f^{\prime}, s\right)
$$

and, for cuspidal Π, a factorization into certain local relative characters

$$
\mathbb{J}_{\Pi}\left(f^{\prime}, s\right)=2^{-2} \mathscr{L}(s+1 / 2, \pi) \prod_{v} \mathbb{J}_{\Pi_{v}}\left(f_{v}^{\prime}, s\right)
$$

Passing to the local situation

$$
\left.\begin{array}{c}
\left\{\begin{array}{c}
\text { Number fields } \\
{[F: \mathbb{Q}]<\infty}
\end{array}\right\}<--->\left\{\begin{array}{c}
\text { Function fields } \\
{\left[F: \mathbb{F}_{q}(t)\right]<\infty}
\end{array}\right\} \\
\vdots \\
\vdots \\
\vdots \\
v
\end{array}\right\}
$$

Unitary Rapoport-Zink space

- F^{\prime} / F : an unramified quadratic extension of p-adic fields.
- \mathbb{X}_{n} : n-dim'l Hermitian supersingular formal $O_{F^{\prime}}$-modules of signature ($1, n-1$) (unique up to isogeny).
- \mathcal{N}_{n} : the unitary Rapoport-Zink formal moduli space over $\operatorname{Spf}\left(O_{\breve{F}}\right)$ (parameterizing "deformations" of \mathbb{X}_{n}).
- The group $\operatorname{Aut}^{0}\left(\mathbb{X}_{n}\right)$ is a unitary group in n-variable and acts on \mathcal{N}_{n}.
- The \mathcal{N}_{n} 's are non-archimedean analogs of Hermitian symmetric domains. They have a "skeleton" given by a union of Deligne-Lusztig varieties for unitary groups over finite fields.

Local intersection numbers

- A natural closed embedding $\delta: \mathcal{N}_{n-1} \rightarrow \mathcal{N}_{n}$, and its graph

$$
\Delta: \mathcal{N}_{n-1} \longrightarrow \mathcal{N}_{n-1, n}=\mathcal{N}_{n-1} \times_{\operatorname{SpfO}_{\breve{F}}} \mathcal{N}_{n}
$$

Denote by $\Delta_{\mathcal{N}_{n-1}}$ the image of Δ.

- The group $G(F):=\operatorname{Aut}^{0}\left(\mathbb{X}_{n-1}\right) \times \operatorname{Aut}^{0}\left(\mathbb{X}_{n}\right)$ acts on $\mathcal{N}_{n-1, n}$. For (nice) $g \in \mathrm{G}(F)$, we define the intersection number

$$
\begin{aligned}
\operatorname{Int}(g) & =\left(\Delta_{\mathcal{N}_{n-1}}, g \cdot \Delta_{\mathcal{N}_{n-1}}\right)_{\mathcal{N}_{n-1, n}} \\
: & =\chi\left(\mathcal{N}_{n-1, n}, \mathcal{O}_{\Delta_{\mathcal{N}_{n-1}}} \otimes^{\mathbb{L}} \mathcal{O}_{g \cdot \Delta_{\mathcal{N}_{n-1}}}\right)
\end{aligned}
$$

The arithmetic fundamental lemma (AFL) conjecture

Define a family of (weighted) orbital integrals:
$\operatorname{Orb}\left(\gamma, \mathbf{1}_{\mathfrak{g l} l_{n}\left(O_{F}\right)}, s\right)=\int_{\operatorname{GL}_{n-1}(F)} \mathbf{1}_{\mathfrak{g l}_{n}\left(O_{F}\right)}\left(h^{-1} \gamma h\right)|\operatorname{det}(h)|^{s}(-1)^{\operatorname{val}(\operatorname{det}(h))} d h$.
This serves as the local version of the analytic RTF. Then the local version of the global "arithmetic intersection conjecture" is

Conjecture (Z. '12)
Let $\gamma \in \mathfrak{g l}_{n}(F)$ match an element $g \in \mathrm{G}(F)$. Then

$$
\pm\left.\frac{d}{d s}\right|_{s=0} \operatorname{Orb}\left(\gamma, \mathbf{1}_{\mathfrak{g l}_{n}\left(O_{F}\right)}, s\right)=-\operatorname{Int}(g) \cdot \log q
$$

The status

Theorem (Z. '12)

The AFL conjecture holds when $n \leq 3$.
A simplified proof when $p \geq 5$ is given by Mihatsch. For $n>3$, we only have some partial results.

Theorem (Rapoport-Terstiege-Z. '13)

When $p \geq \frac{n}{2}+1$, the AFL conjecture holds for minuscule elements $g \in \mathrm{G}(F)$.

A simplified proof is given by Chao Li and Yihang Zhu.

Ramified quadratic extension F^{\prime} / F

- Non-archimedean ramified F^{\prime} / F (Rapoport-Smithling-Z. '15, '16): an arithmetic transfer (AT) conjecture, and the case $n \leq 3$ is proved.
- Question: what about archimedean F^{\prime} / F ?

Ramified quadratic extension F^{\prime} / F

- Non-archimedean ramified F^{\prime} / F (Rapoport-Smithling-Z. '15, '16): an arithmetic transfer (AT) conjecture, and the case $n \leq 3$ is proved.
- Question: what about archimedean F^{\prime} / F ?

Thank you!

Periods, cycles, and L-functions: a relative trace formula approach

Wei Zhang

Massachusetts Institute of Technology

ICM 2018, Rio

